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Figure 1: The NEO system jointly observes the physical and virtual environments and takes action in the two environments
simultaneously. It is designed to deal with disruptions for people when they are immersed in a virtual working environment.

ABSTRACT
Human-computer symbiosis is a crucial direction for the develop-
ment of artificial intelligence. As intelligent systems become in-
creasingly prevalent in our work and personal lives, it is important
to develop strategies to support users across physical and virtual
environments. While technological advances in personal digital
devices, such as personal computers and virtual reality devices, can
provide immersive experiences, they can also disrupt users’ aware-
ness of their surroundings and enhance the frustration caused by
disturbances. In this paper, we propose a joint observation strategy
for artificial agents to support users across virtual and physical envi-
ronments. We introduce a prototype system, neighbor-environment
observer (NEO), that utilizes non-invasive sensors to assist users
in dealing with disruptions to their immersive experience. System
experiments evaluate NEO from different perspectives and demon-
strate the effectiveness of the joint observation strategy. A user
study is conducted to evaluate its usability. The results show that
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NEO could lessen users’ workload with the learned user preference.
We suggest that the proposed strategy can be applied to various
smart home scenarios.
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1 INTRODUCTION
Human-computer symbiosis is one of the potential outcomes of
human-computer interaction (HCI). Licklider envisioned a part-
nership between humans and computers that could be viable, pro-
ductive, and thriving [40]. Numerous efforts have been made from
different perspectives to move closer to human-computer symbio-
sis, including computer vision [27, 33, 37, 60, 61], natural language
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processing [2, 4, 11, 42], robotics [20, 34, 59], and interdisciplinary
fields [13, 51, 52]. With the development of artificial intelligence
(AI), remarkable achievements have emerged, such as deep learning
(DL) [35] and reinforcement learning (RL) [55]. Intelligent agents
now possess the capability to detect objects, recognize people’s iden-
tities, comprehend sentences, and even offer human-like feedback
through audio or visual avatars.

On the other hand, to approach an immersive working environ-
ment with digital content and agents, interface technologies such as
virtual reality (VR), augmented reality (AR), and mixed reality (MR)
have been developed. These technologies provide people with rich
visual experiences and novel interactions [29]. When people are
immersed in virtual environments, their virtual states may change
vastly. So do their physical states. In such cases, cooperating with
humans requires awareness not only of their states in the virtual
environments but also in the physical environment. This can benefit
from a combination of digital AI agents and smart-home agents.

There has been extensive research exploring digital AI agents for
VR, AR, and MR environments. One notable approach is embodied
artificial intelligence [19], which is designed to learn and explore in
virtual simulated environments. With virtual embodiments, agents
explore the virtual environment using not only visual information
but also knowledge gained from interaction. This enables them to
perform various tasks in VR, from point navigation [18] to simple
daily interactions [54]. Consequently, agents based on embodied
AI are more suitable for cooperating with humans by modeling
human users’ minds, which has further catalyzed research in the
area of multi-agent systems [28, 53].

However, human users do not solely stay in virtual environments,
even when using VR Head-Mounted Devices (HMDs). They often
transition between the physical and virtual environments or receive
information from both simultaneously. For example, one still hears
sounds and smells scents from the physical room around them
when using VR HMDs. This phenomenon of transition can be a
source of disruption and can even lead to VR sickness [10]. External
stimuli, such as sudden temperature changes or gusts of wind, can
disrupt immersion in the virtual world [57], as can unexpected
visitors at the door. These changes in physical states are often not
considered in traditional immersive systems but can be observed
and intervened by an intelligent agent equipped with sensors and
actuators. In this case, here comes the research question:

RQ: How can an artificial agent observe, understand, and coop-
erate with humans when they are immersed in the virtual
environment, particularly in the presence of disruptions from
the physical world?

Researchers have been examining the question of how do virtual
agents effectively operate in both physical and virtual environ-
ments, and one perspective is the concept of symmetrical reality
(SR), as proposed by Zhang et al. [65–68]. The SR paradigm involves
enabling virtual agents to perceive and act in both environments.
Our work inherits the core concepts of SR paradigm and extends it
in terms of technical implementation, prototype frameworks, and
application cases. An example is shown in Figure 1. In particular,
we define the physical and virtual environments as “neighbor envi-
ronments”, as any digital device can serve as a gateway between

them. We formulated the following research questions to further
delineate the overarching research question RQ:

RQ-1: What methodology should be employed for an agent to un-
derstand users’ states when they are in physical and virtual
environments simultaneously?

RQ-2: How can an agent align and parse information from both
users and the environments in a coherent manner, and gen-
erate decisions autonomously without explicit commands
from the users?

RQ-3: What types of embodiments are necessary for the agent to
execute decisions that involve both the physical and virtual
environment?

RQ-4: What design strategy of the agent’s interface could reduce
the users’ disruption and enhance immersion?

These research questions guide our investigation into the un-
derlying factors that are critical to the development of an effective
and efficient agent that can seamlessly operate in both physical and
virtual environments. By addressing these questions, we hope to ad-
vance the state-of-the-art in human-agent interaction and facilitate
the design of novel and innovative interfaces that can effectively
serve users in complex and dynamic environments.

We proposed an intelligent agent, the neighbor-environment
observer (NEO), as shown in Figure 2, which is designed to operate
across the physical and virtual environments, accompanying human
users in their daily activities. By parsing data from a non-invasive
sensor system, NEO leverages a scalable decision module to gener-
ate real-time decisions that align with user needs without the need
for explicit user commands. We also provide a series of physical
and virtual embodiments to take action across environments. We
then conducted a user study to assess the usability of NEO. The
results demonstrate that NEO effectively reduces user workload
resulting from disruptions during VR immersion, increasing user
engagement. These findings highlight the importance of develop-
ing agents that can seamlessly operate across physical and virtual
environments, providing personalized and responsive support to
users in dynamic and complex settings.

In summary, this paper makes four key contributions.

• We design a framework for neighbor-environment observa-
tion that leverages non-invasive sensors to gather informa-
tion from both physical and virtual environments.

• We propose a decision-making algorithm that can (1) gener-
ate decisions autonomously, (2) is compatible with different
levels of sensor implementation, and (3) can learn user pref-
erences interactively.

• We propose a series of physical and virtual embodiments and
a matching method so that they can collaborate to execute
the generated decisions across both environments.

• We develop a prototype system, NEO, as an artificial secre-
tary in a smart home scenario, specifically a study room.

2 RELATEDWORKS
2.1 Environment Observation
Multiple sensors have been implemented in smart spaces to gain a
better perception of the physical environment. Cameras and micro-
phones are widely used across research and industrial fields. RGB
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Figure 2: External stimuli and disruptions may break the immersion. We propose an intelligent agent NEO that could perceive
user’s demands, help them to handle the disruptions, and preserve their immersion in virtual environments.

cameras are used for 2D object detection, while depth sensors are
usually used for 3D object detection and robotic navigation [21].
Thermal sensors are used to monitor temperature, which can also
be used as safety alarms. Dowdall et al. [15] proposed a system to
support the life of senior people. They used burglar alarm-style
sensors to detect the states of doors and windows. A custom-made
body count sensor was used to detect the number of people in the
environment. Kidd’s team [30] proposed the design of a system
using small radio-frequency tags to track the movement of objects
and show their locations. Borelli et al. [6] proposed an extensive
digital platform for smart homes named HABITAT with the tech-
nology of the Internet of Things (IoT). They utilized radio frequency
identification (RFID) readers and tags for localization.

2.2 User Understanding
Understanding human behavior and intention is a widely discussed
topic. Thakur et al. [58] used skeleton data collected by wearable
sensors to analyze interactions of the aged group in smart homes.
They infer emergencies by a rule-based reasoning diagram.

Attention, sometimes also denoted as engagement [56], is an-
other important criterion studied in smart-home-related research.
Data is collected through different methods including question-
naires [43], RGB or depth cameras, temporal performances, inter-
views, observations, physiological sensors (e.g., electroencephalog-
raphy), tracking sensors (e.g., motion, eye and laser tracking), speech
and dialogue records, contextual and application record (e.g., game
score), etc. Visual features such as head pose and eye gaze are widely
used as a reference for attention understanding [12, 45, 47]. The
algorithm may overlook evidence of distraction when only using
one feature. For example, when the user stares at what he/she is
supposed to focus on, it is difficult to detect the state of daze [45].
Thus, some researchers turn to fusing modalities for better solu-
tions [5, 62]. Rudovic et al. [48], for example, fused data from an
RGB camera, a microphone, and a smart watch 1 to evaluate chil-
dren’s attention during child-robot interactions.

1https://www.empatica.com/en-int/research/e4/

There has been a significant amount of work focused on the de-
tection of interruptibility [26, 32] using microphones [16], personal
computer (PC) activity [25], and motion sensors [23].

2.3 Embodied Agent in Virtual Environments
It is a rising topic that gives AI agents virtual embodiments and
enables them to explore the virtual world. There are virtual (or
physical-virtual mixed) environments designed for agents to learn
skills from human demonstration [9, 38, 50]. Researchers also de-
veloped virtual simulators where AI agents learn new skills by in-
teracting with the environments with their embodiments, without
human demonstration. For example, CARLA [14], AI2-THOR [31],
Virtual Home [44], iGibson [39, 63] are popular simulators. There-
fore, we believe that the embodiments are necessary to build an
agent for immersive working companionship. We decided to ex-
tend the design of embodiments to the physical environment and
propose a matching method enabling their collaboration.

2.4 Agent in Smart Spaces
Some systems provide feedback by tuning the environment [46,
69] while others utilize avatars with digital cartoon faces [5, 12],
simplified robotic bodies [17, 56], or humanoid bodies [24, 48].

Danninger et al. [12] proposed a virtual secretary system in the
office that mediated phone calls and visits by implementing an RGB
camera and a microphone in the office. Zhao et al. [69] and Richer
et al. [46] designed a system that changed its appearance according
to the users’ physical states to help them keep concentrated or
recover from stress. Cameras and wearable sensors were used to
understand users’ states while projectors, lighting systems, and
sound systems were used to control the room’s appearance.

3 NEIGHBOR-ENVIRONMENT OBSERVATION
3.1 Concept
Symmetrical Reality. Symmetrical Reality (SR) is a framework
that unifies concepts and interactions about the combination of
the physical world and the virtual world [67]. The two worlds
are topologically symmetrical. The virtual world is composed of

https://www.empatica.com/en-int/research/e4/
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virtual agents and the virtual environment, similar to how the
physical world is composed of humans and the environment. The
virtual environment and virtual agents can evolve automatically,
similar to how the physical environment and humans can evolve.
SR defines a symmetrical topology between the physical and the
virtual world, highlighting the importance of considering virtual
agents and human users at an equal level.

Neighbor-Environment Observation. In this article, we de-
fine the physical and the virtual environments as neighbor en-
vironments. Following the SR paradigm, neighbor-environment
observation is an approach to fuse information from these two
types of environments. As human users could interact in both envi-
ronments, we suggest that only by observing the two environments
simultaneously could the agent gain an overall knowledge of the
ongoing situation. Therefore, such methodology enables the agent
to better parse the states of the users and the environments. Here
we consider the mapping between the physical environment and
the virtual environment as a bijection. Cases, where one physical
environment is linked to multiple virtual environments, will be
discussed in the discussion chapter.

3.2 Requirements
When users immerse themselves in a virtual environment through
digital devices, their physical bodies continue to gather informa-
tion from the physical environment around them. However, this
information can often be detrimental to the immersive experience
in virtual reality, as disruptions from the physical environment
such as a ringing phone or unexpected guests can easily break the
immersion. Users may be forced to leave the virtual environment
to address them, which might interrupt an important task (e.g., a
report at an international conference or a negotiation with the boss).
We contend that intelligent agents in smart homes should be able
to recognize such dilemmas and provide spontaneous assistance to
alleviate these disruptions. To achieve this, the agent must possess
advanced cognitive abilities. Here list the requirements:

Req-1: Perception. The agent should be able to accurately perceive
and understand the immediate situation, including the user
states and the disruptions. (Related to RQ-1)

Req-2: Reasoning. The agent should be able to reason about the
user’s availability to handle disruptions and determinewhether
it is appropriate to intervene. (Related to RQ-2)

Req-3: Action. The agent should be capable of executing actions in
both the virtual and the physical environments to minimize
disruptions for the user. (Related to RQ-3)

Req-4: Feedback. The agent should provide appropriate feedback
about the occurrence of disruptions while minimizing nega-
tive impacts on their immersion. (Related to RQ-4)

The four requirements are related to the four RQs accordingly.
Req-1 demands the agent to take both the physical and the virtual

environment into account. Thus, sensors should be implemented
into the two environments. Collected data should be aligned with
a minimal time delay. Moreover, it requires the sensors to be non-
invasive so that they will not interfere with the user’s primary tasks.
Data transfer should be wireless so that the agent can perceive a
larger physical region.

Req-2 requires the agent to parse both the physical states and
the virtual states of the user, as well as the environmental states.
The agent should be able to distinguish when is appropriate to help
and when is unnecessary. It requires an understanding of the user’s
goals and priorities. As user preferences are various, the agent’s
mind should be compatible with different users and should be able
to update itself.

Req-3 requires the agent to have the ability to execute actions in
the two environments. Sometimes it needs to manipulate objects
in the physical world to handle certain disruptions. For example,
when the battery is low, one should take off the VR HMD, find the
charger, and plug it into the device. Neither graphical notifications
nor voice assistants could solve such problems. Thus, we present a
series of embodiments including physical ones like desktop robots
and virtual ones such as notification user interfaces (UIs).

Req-4 demands the agent to understand the user’s preferences
and to provide clear and informative feedback. The feedback should
be straightforward to alert the immersed user that something has
happened and what has the agent done for the user. It should also be
lightweight to avoid affecting others who are sharing the physical
or virtual environment with the user. In addition, the agent should
have a port to collect users’ feedback and update itself accordingly.

4 METHOD
4.1 Design Overview
In this section, we propose a framework for intelligent agents to ob-
serve, understand and cooperate with humans when they immerse
in a virtual environment. The framework is designed for single-user
use. It is constructed by three modules: the perception module, the
decision module, and the action module. Each module is designed
with a specific purpose, utilizing distinct methods. We will provide
a detailed explanation of these module individually.

Figure 3 shows an overview of how the information transfers
between the three modules. Our framework is developed with the
setting of common immersive work scenarios, utilizing a personal
computer (PC) and a VR HMD. This allows quick evaluation of ef-
fectiveness with minimal use of customized sensors and devices. To
increase portability, we employ wireless methods for data transfer.

4.2 Joint Observation
Thismethod is focused on enabling the agent to access both physical
and virtual environments, expanding the current capabilities of
smart home agents, which primarily perceive the physical world.
Physical sensors act as tentacles to gather information from the
physical environment, while virtual data ports serve as tentacles to
the virtual environments.

The collected information is grouped into four categories: (1)
physical environmental information (PE); (2) physical user infor-
mation (PU); (3) virtual environmental information (VE); and (4)
virtual user information (VU). The sources included in this work
are summarized in Table 1.

Physical environmental information. We add two additional
sensors (two RGB cameras) to capture visual information in the
physical environment. From this data, the agent detects events and
disruptions that occur in the physical environment. The cameras’
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Figure 3: Information and decision transfer process in our
framework. Joint observation information is transmitted to
a data manager via WiFi. The data manager activates the
decision manager, from which the decision is transmitted to
the two types of embodiment.

positions define the agent’s perception area. In the prototype sys-
tem, as shown in Figure 1, one camera monitors the user’s working
area near the desk, while the other watches the door for visitors.
The data from each camera is parsed independently. Our parsing al-
gorithm does not require binocular-camera reconstruction, making
it easy to change the number of cameras without calibration.

Physical user information. Visual and auditory information
is utilized to interpret the user’s states. An RGB camera is located
beside the desk. The system classifies user poses into nine cate-
gories: using a device, using a keyboard, using a mouse, writing,
reading, using a mobile device, resting, drinking, and eating. A mi-
crophone is used to detect whether the user is speaking. The system
also infers three physiological needs by the time interval between
the current time and the last detection of the corresponding action:
thirst (activated after 30 minutes), hunger (activated after 180 min-
utes), and fatigue (activated after 2 hours of continuous work as
prolonged periods may harm health [64], or after 20 minutes of
VR usage considering visual fatigue [36]). Users can adjust these
thresholds.

Virtual environmental information. The activated window
on the PC desktop and the activated scene in VR are recorded.
We define three kinds of mappings for PC windows: work (online
meeting apps, browsers, Microsoft Office Word), entertainment
(PC games, media players), and others. Similarly, we define three
kinds of mappings for VR scenes: work (online meeting scenes),
entertainment (VR games, painting Apps), and others. A thread is
activated to monitor the battery levels and data from the controllers.

Virtual user information. We monitor four user activities:
mouse usage, keyboard usage, VR HMD usage, and VR controller
interactions. Mouse and keyboard activities pertain to interactions
through the PC. The VR HMD position indicates the user’s location
in the virtual environment. With calibration, it also shows their
physical location. The HMD’s orientation shows the user’s gaze
direction. Additionally, input signals from the VR controllers are
utilized to recognize the user’s options, indicating whether the user
is occupied or not.

Table 1: Information sources in joint observation
Information Category Type of Sources1

Physical Environment (PE) Visual information (RGB camera).

Physical User (PU) Visual information (RGB camera);
Auditory information (Microphone).

Virtual Environment (VE) Activated windows on PC;
Activated VR scenes.

Virtual User (VU) Activity of mouse and keyboard;
Activity of VR HMD & controllers.

1 Italics indicate that additional sensors are utilized to capture such information.

4.3 Scalable Decision Making
4.3.1 Decision Module.

The decision module is designed based on the information type
from the perception module. It is initialized by an And-Or Graph
(AOG) [70] with a probabilistic model. When receiving reports from
the sensors, the decision module generates a parse tree by pruning
the AOGs and categorizes possible user occupation states into two
channels:

(1) input channel: hands occupation, speaking occupation.
(2) output channel: visual occupation, auditory occupation.
Joint parsing. To give a better vision of this model, we utilize

the case where the user works from home using a VR HMD and PC.
The AOG, shown in Figure 4, consists of two halves: the left half
represents joint user observations (𝐺𝑢 = (𝑉𝑢 , 𝐸𝑢 )), and the right
half represents joint environment observations (𝐺𝑒 = (𝑉𝑒 , 𝐸𝑒 )).
The AOG contains And-nodes, Or-nodes, and Terminal-nodes [70].
Different layers represent different levels of observation. Terminal-
nodes represent the occupation states to be observed.

Occupation inference. The decision module utilizes the parse
tree generated from the AOG to infer potential occupations caused
by disruptions and check for conflicts with existing occupations.
The Terminal-nodes of the parse tree vote for the overall occupation.
We introduce a hyperparameter to alter the weight between positive
votes and negative votes. The agent infers the overall occupation
state according to the percentage of positive votes among all votes.

Probabilistic model. The probability of taking actions at time
𝑡 is denoted as Equation 1.

𝑃 (𝐴𝑡 ,𝐶𝑡 , 𝑝𝑡𝑡 ) = 𝑃 (𝐴𝑡 |𝐶𝑡 , 𝑝𝑡𝑡 )𝑃 (𝐶𝑡 |𝑝𝑡𝑡 )𝑃 (𝑝𝑡𝑡 ) (1)

where 𝐴𝑡 denotes the decided action at time 𝑡 , 𝐶𝑡 denotes the
conflict at time 𝑡 , and 𝑝𝑡𝑡 denotes the parse tree at time 𝑡 .

4.3.2 Personalization.
We propose a personalization module to adjust the probabilities

of taking actions so that the agent learns the personal preferences of
different users. We utilize a sigmoid function denoted as Equation 2
when tackling 𝑃 (𝐴𝑡 |𝐶𝑡 , 𝑝𝑡𝑡 ).

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1
1 + 𝑒−𝑧

(2)

For each 𝑃 (𝐴|𝐶, 𝑝𝑡), we define an initial probability of taking action.
After each decision the agent made, the user gives feedback to the
agent for their action. According to the feedback, the conditional
probability of taking action 𝐴𝑡 oscillates between 0 and 1 along
the sigmoid function. Figure 5 shows an example. Point M shows
the initial conditional probability. If the agent receives negative
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Figure 5: The agent adjusts the conditional probability along
the sigmoid curve according to the user’s feedback. It stops
when reaching the upper or lower bound.

feedback, the probability takes one step left to reach point 𝑁1 and
takes 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑁1) as the new conditional probability, and vice
versa. If the user gives negative feedback again, the probability
goes to point 𝑁2 to update 𝑃 (𝐴|𝐶, 𝑝𝑡).

4.4 Joint Action
To take action and offer assistance in the two environments, the
agent needs different kinds of embodiment. We define the actions
into four categories. Graphical actions in the virtual environment
are shown as UI notifications, including (1) a reminder of taking a
break; (2) a video stream of the visitor at the door; (3) a reminder
of the devices’ low battery state. Virtual embodied actions are
designed to provide visual cues in the virtual environment. A robot
character is shown if NEO starts monitoring.When bringing objects
for the user, NEO renders their virtual counterparts for the user to
grab the delivered gadgets without removing VR HMD. Physical
embodied actions are designed for the agent to interact with
the physical environment. The agent brings desktop-level objects
and receives visitors. Details are introduced in the next chapter.
Auditory actions play an auxiliary role in receiving visitors.

5 IMPLEMENTATION
Following these methods, we develop a prototype system, NEO.

5.1 Software Overview
Algorithm implementation. To simplify the system, similar
algorithms are used to process data from similar sensor types (See
Table 1 for sensors of NEO). For instance, images from RGB cameras
are processed by similar algorithms developed based on CVZone [1],
OpenCV [7] and MediaPipe [41]. Algorithms for cameras of the
physical environment detect and crop region that includes faces
in the image to detect visitors and inform the user. Algorithms for
cameras of the physical user estimate the user’s skeleton and detect
objects near the user to categorize the pose. Virtual activities data
of the user are smoothed by a filter before passing to the decision
module. Other data is transferred to the decision module directly.

Interface implementation. In order to facilitate NEO’s graph-
ical actions, we design a series of interfaces. To show the design,
we use the scenario of a one-on-one VR meeting as an example.
As shown in Figure 1, NEO renders a robot character at startup
to represent its running state to the user. NEO renders a virtual
counterpart in the virtual environment when bringing an object to
the user physically. By calibrating the position of NEO’s physical
embodiments, we align the position of physical objects and their
virtual counterparts. For example, if NEO brings a cell phone to
the user, a virtual phone is rendered in the VR scene, moving in
sync with the physical phone. All virtual interface is only visible
to users. Other individuals in the VR scene are unable to see the
virtual objects and interfaces.

Data communication and management. A data manager
module is developed to align the heterogeneous input data by a
clock wave (T = 20 ms), as shown in Figure 3. The sensor states are
checked at the clock-rising edge. If a sensor does not send data in
the last clock period, its state will be set to inactive. To improve
efficiency, the data manager module passes current states to the
decision module only when a state change occurs.
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Figure 6: Hardware implementation of NEO. The mobile
robots serve as movable physical embodiments of NEO. To-
gether with trays and the camera, they construct the desktop
robot system that provides object transportation. The mo-
bile robot connected with a speaker forms the ground robot
system that could help the users to receive visitors.

5.2 Hardware Overview
Hardware implementation is shown in Figure 6.

Personal computer. The core computation of NEO is accom-
plished by the existing personal computer of the user. In this work,
we implement NEO on a PC with an AMD Ryzen 9 5950X CPU
and an NVIDIA RTX 3070 GPU. It is also used for rendering virtual
environments for the experiment. Two 1080p RGB cameras are
connected to the PC to capture visual information.

VR related devices. An HTC Vive HMD and two controllers
are used. The HMD displays the virtual environment, while the
controllers allow for interaction. They also provide VU sensors
for NEO: the HMD provides the user’s orientation and the built-
in microphone collects auditory cues. A Leap Motion device is
mounted in the front of the Vive HMD to reconstruct the skeleton
of the user’s hands for object grasping.

Movable embodiment. A desktop robot with a diameter of 7
𝑐𝑚 is developed as the movable embodiment. The robot is equipped
with two differential-driven wheels and two reduction stepper mo-
tors, by which it can move freely on the tabletop and locate itself
by odometry. The linear speed of the robot can reach 10 𝑐𝑚/𝑠 with
3 𝑐𝑚 diameter wheels, and the pull-out torque can reach 0.4 𝑘𝑔𝑓 /𝑐𝑚.
With a wireless microcontroller unit (ESP32PICOV302) the robot is
able to receive the message either fromWiFi or from Bluetooth Low
Energy (BLE) devices. Trays with markers and universal wheels (4
wheels for 1 tray) are 3D printed to support object transportation.
The desktop robot could identify markers on the tray to locate the
target objects on it. To bring objects to the user, the desktop robot
moves to the marker, and pushes the tray toward the user.

5.3 VR-side Implementation
To help readers better understand our framework, we demonstrate
it in a VR experience of a one-on-one meeting. Figure 7 shows
the basic scene of the implementation, some examples of the dis-
ruptions, and the corresponding actions provided by NEO. During
the meeting, the VR users discuss a research topic with the avatar
of a professor. The professor introduces her point of view in the
meeting and brings up several open questions. Different types of

disruptions, either from the physical environment or the virtual
environment, are rendered during the meeting. The VR users are
asked to concentrate on the meeting as much as possible while
handling these disruptions.

6 EXPERIMENT
We launched two technical experiments to evaluate the ability of
NEO from two perspectives: (1) evaluation #1: the influence of
different activated sensor groups; (2) evaluation #2: NEO’s ability
to learn the user’s preference.

6.1 System Evaluation #1
6.1.1 Experiment design.

Evaluation goal. Measure the extent of NEO’s capability when
activating different sensor groups, related to the Req-1 and Req-2.

Apparatus. We prepared a toy test set comprising different
online working or entertaining scenarios with two dimensions:
occupation, and disruption. There are 13 cases in the occupation
set (O01-O13) and 6 cases in the disruption set (D1-D6). O13 was
included as it is common in daily life. Testing this case will make the
system evaluation more comprehensive. Sensors were categorized
into four classes according to their information source type listed
in Table 1: physical environment (PE), physical user (PU), virtual
environment (VE), and virtual user (VU). To make the result clearer,
we chose 10 typical sensor combinations (S1-S10). Table 2 shows
the details.

Task.We explored the system’s ability by activating different
sensor groups and testing the decision accuracy of NEO. The accu-
racy here is defined as Equation 3:

𝐴𝑐𝑐 =

∑
𝑑∈𝐷 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑑)
𝑁𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(3)

where 𝑁𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the total number of decisions in a certain case,
D is the set of decisions from NEO in this case, and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑑) is
defined as:

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑑) =
{

1 , 𝑑 = 𝑑𝑔𝑡 ,

0 , 𝑒𝑙𝑠𝑒.
(4)

6.1.2 Result.
The result is shown in Figure 8. We visualized a total of 78

different cases with 10 different combinations of sensors. Overall,
the results show an increasing trend in accuracy when activating
more sensors. The performance on O13 reaches 100%, showing that
NEO knows when not to help. The level S10 that has access to all
four observation classes reaches the highest performance. S10 is
able to handle most of the cases except for D6. All sensor level
shows zero accuracy in this case (except for O13). It is because the
current version of NEO fails to parse the disruption of “knock over
a glass of water” so its decision remains “no action”. Disruptions
like D6 are denoted as hard problems. However, such shortcomings
of NEO could be reduced in future work by extending its parsing
algorithm.

For disruption case 1 (D1), we noticed that S7 failed to react to all
the disruptions. This was caused by the missing perception of the
physical environment. Information of D1, a visitor at the door, can
only be observed in the physical environment. Losing connection
to PE sensors caused this fatal problem. Similar phenomena were
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help the user handle disruptions.

Figure 7: VR implementation of NEO. It visualizes how the disruptions and actions are rendered in VR.

Table 2: Dimensions and cases in the test set.
Activated Sensor Group Occupation Disruption
ID Case ID Case ID Case
S1 PE only O1 Have a one-on-one discussion in VR D1 Visitor knocks at the door
S2 VU only O2 Play a game in VR D2 User feels thirsty
S3 PU only O3 Paint in VR with controllers D3 User keeps using digital device over 20 minutes
S4 VU-VE O4 Have a multi-person meeting in VR D4 Phone rings
S5 PE-VU O5 Watch a movie in VR D5 VR device notifies battery low
S6 PU-PE O6 Have an online interview using PC D6 User knocks over a glass of water
S7 PU-VU-VE O7 Play game on PC
S8 PU-PE-VU O8 Write an article on PC
S9 PU-PE-VE O9 Have an online lesson on PC
S10 PU-PE-VU-VE O10 Watch a movie on PC

O11 Use a mobile device (smartphone or tablet)
O12 Read a book
O13 Have a rest

observed in D4 (S7), D5 (S8), etc. These phenomena support the
theory of joint observation: losing connection to either the physical
environment or the virtual environment will lead to a drop in
performance.

O10 is a relatively demanding task where NEO’s performance
is sensitive to the information of VE. Clues from PU are similar to
O13. Only by observing the virtual environment, namely the active
window on the PC, can NEO understand the true state. This also
supports the joint observation theory.

6.2 System Evaluation #2
6.2.1 Experiment design.

Evaluation goal.Measure the capability of NEO to learn user
preferences while testing whether the system fulfills Req-2.

Apparatus.We chose a typical case (O1+D1) from the test set
to evaluate the ability of personalization. The occupation case was
set to always be “have a one-on-one discussion in VR” while the
disruption was always “a visitor knocks at the door”. We put three
simulated users in the simulated environment with different pref-
erences about NEO’s actions, which is shown in Table 3. User A
always gets annoyed if NEO goes and receives the visitor. User B
gets annoyed in the first 3 rounds, shows neutral attitudes in the
middle 4 rounds, and reacts satisfied in the last 3 rounds. User C is
always satisfied with NEO’s help.

Task. NEO was allowed to interact with the three users 10 times
to learn their preferences.

6.2.2 Result.
The change in the action probability during the 10-round interac-

tions is visualized in Figure 9. In the case of User A, the probability
of receiving the visitor drops fast after the first three interactions.
In the case of User B, a similar drop is seen in the first two rounds.
The probability raises back after User B changes its mind at the
last three interactions. In the case of User C, the action probability
remains high as User C likes NEO to receive visitors. The result
visualizes the learning procedure of NEO and demonstrates the
ability of NEO to learn different preferences.

6.3 User Study
6.3.1 Goal and Hypothesis.

Evaluation goal. The goal of this user study is to validate
whether our method can autonomously generate decisions when
disruptions occur and reduce users’ distraction through the em-
bodiments. Moreover, we want to evaluate the usability of NEO.
We invited the participants to come to our lab and experience a
VR meeting. During the meeting, we rendered multiple disruptions
around the participants to record their reactions and feedback.

Table 3: Personality of the simulated users.
User Personality

User A Always annoyed if NEO goes and receives the visitor.
User B Annoyed at first, neutral in the middle, satisfied at last.
User C Always satisfied if NEO goes and receives the visitor.



Neighbor-Environment Observer: An Intelligent Agent for Immersive Working Companionship UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

1.0

0.8

0.6

0.4

0.2

0.0

Decision Accuracy for D1 Decision Accuracy for D2 Decision Accuracy for D3

Decision Accuracy for D4 Decision Accuracy for D5 Decision Accuracy for D6

Occupation Case Occupation Case Occupation Case

Occupation Case Occupation Case Occupation Case

Ac
tiv

at
ed

 S
en

so
r L

ev
el

Ac
tiv

at
ed

 S
en

so
r L

ev
el

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

Figure 8: Result of system experiment. The six sub-graphs visualize the decision accuracy of NEO in the occurrence of the six
disruption cases (D1-D6) respectively. The x-axis of each graph denotes the ID of the tested occupation case (O1-O13). The
y-axises denote the ID of the activated sensor group (S1-S10). All details of the three groups of variables are shown in Table 2.
Numbers in the matrix refer to accuracy in terms of percentage. The percent symbol is hidden for a clearer view.
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Figure 9: Result of learning experiment with three users.

Hypothesis.While the two system evaluations address Req-1
and Req-2, the following hypotheses pertain to Req-3 and Req-4.

(H1) NEO could enhance users’ sense of engagement dur-
ing a VR meeting in the presence of external disruptions.We
hypothesize that NEO’s assistance in neighboring environments
thereby increases user engagement when disruptions occur. (H2)
NEO could alleviate users’ workload in managing distract-
ing events. We hypothesize that when NEO shares a portion of
the workload to disruptions, that of users is reduced. (H3) The
personalizationmodule would improve the overall user expe-
rience of the system. Although the action rate is designed based
on occupation conflict, we acknowledge that people have varying
preferences regarding NEO’s assistance. Therefore, we postulate
that user experience will be further enhanced after personalization.

6.3.2 Participants.
Twelve participants (P01-P12, 5 Females and 7 Males) aged be-

tween 21 to 31 were recruited (M=24.92, SD=3.20). About 83.3% of
the participants have used VR devices and 66.7% work online over
eight times per month, which is considered relatively frequent. As
compensation for their effort, participants received a small gift. All

participants attended in person and reached the end of the user
study.

6.3.3 Procedure.
The whole procedure lasted for 30 minutes. An investigator

helped the participants to wear the VR HMD and took notes during
the study. After reporting demographic information, participants
were required to go through three phases of tasks: (1) the Control
phase, (2) the Original NEO (O-NEO) phase, (3) the Personalized
NEO (P-NEO) phase. If participants get familiar with the procedure,
the ratings of engagement might naturally increase and the work-
load might drop. To exclude such influence, we disrupted the order
of the phases (e.g., P01 went through Control phase → O-NEO
→ P-NEO while P02 went through P-NEO→ O-NEO→ Control
phase).

The procedure is visualized in Figure 10. Participants were re-
quired to focus on a discussion with a professor through a VR
meeting. Six disruptions occurred in turn during the meeting. The
professor discussed different topics in different phases to exclude
the influence of familiarity. The three phases shared this same basic
track:

[00:00] Beginning of the experiment;
[00:30] Courier visiting;
[00:40] Professor starting a certain topic;
[01:10] User feeling hungry;
[01:40] Guest arriving;
[02:10] Cell phone ringing;
[02:40] Professor raising a question about the topic;
[03:00] User feeling thirsty;
[03:30] VR device battery low.
We rendered an alternative notice in the VR scene for physio-

logical need, as shown in Figure 7. The participants were asked to
pretend that they were hungry or thirsty when the corresponding
buttons turned from green to red. We rendered the disruption of
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Figure 10: Procedure of the user study. The three phases shared the same basic track: the participant was asked to have a
discussion with a professor. Several disruptions were rendered and the participant was required to handle them. Assistance in
the P-NEO phase was different according to their preference. What is shown in this figure is an example of a possible case.

Figure 11: Ratings for engagement of VR meeting.

“battery low” similarly. Note that both the alternative notice and
the virtual interfaces were exclusively visible to the participants.

Each phase had its unique parts as listed below:
Control phase: No additional assistance was provided.
O-NEO phase: In this phase, O-NEO helped the participants to

deal with various disturbances regardless of their preferences.
P-NEOphase:Before the start of this phase, all participants were

asked to complete a personalized questionnaire for NEO to learn
their preferences. During this phase, P-NEO took action selectively.

At the end of each phase, participants filled in a post-study ques-
tionnaire. The post-study questionnaire consists of four parts: (1) a
questionnaire asking participants to assess their engagement during
the meeting [3, 8] (related to H1); (2) two NASA Task Load Index
(NASA-TLX) questionnaires [22] to evaluate the overall workload
of the whole phase and that of handling the disruptions (related
to H2); (3) a short version of the user experience questionnaire
(UEQ-S) [49] to quantify the user experience of O-NEO and P-NEO
(related to H3); (4) a questionnaire to assess participants’ satisfac-
tion about O-NEO and P-NEO (related to H3). For consistency, all
measures are on a 7-point Likert (1=very low, 7=very high).

A semi-structured interview was launched at last.

6.3.4 Result.
We utilized paired t-tests for significance analysis between every

two phases if the data fit a normal distribution. We utilized the
Wilcoxon signed rank tests when the normality assumption was
violated.

Engagement of the meeting.
Figure 11 shows the reported engagement points. The aver-

age degree of engagement increases from 2.33 to 4.58 after the

O-NEO is involved. The average degree of engagement of the P-
NEO phase is 0.67 higher than that of the O-NEO phase. A paired
t-test shows a significant difference between the control phase and
the O-NEO phase (𝑡11 = −4.700, 𝑝 < 0.01). Significance is also found
in the difference between the control phase and the P-NEO phase
(𝑡11 = −6.027, 𝑝 < 0.001). The result infers that NEO increases user
engagement and helps the user to keep concentrating.

Work load.
The workload over the phase is shown in Figure 12(a). As most

pairs of data in NASA-TLX violated the normality assumption, we
utilized the Wilcoxon signed rank tests for significance analysis.
The mental demand decreases in the O-NEO phase (𝑍 = −2.388, 𝑝 =

0.017) and the P-NEO phase (𝑍 = −2.701, 𝑝 = 0.007), compared to
the control phase. The physical demand (PD) and the time demand
(TD) decrease in the O-NEO phase (PD: 𝑍 = −2.921, 𝑝 = 0.003, TD:
𝑍 = −2.462, 𝑝 = 0.014) and the P-NEO phase (PD: 𝑍 = −2.897, 𝑝 =

0.004, TD: 𝑍 = −2.825, 𝑝 = 0.005) as well. The performance rating
of the P-NEO phase is significantly higher than that of the control
phase (𝑍 = −2.366, 𝑝 = 0.018). These two phases also show lower
requirements of effort (O-NEO: 𝑍 = −2.101, 𝑝 = 0.036, P-NEP:
𝑍 = −2.589, 𝑝 = 0.010) and lower frustration levels (O-NEO: 𝑍 =

−2.573, 𝑝 = 0.010, P-NEO: 𝑍 = −2.777, 𝑃 = 0.005) compared with
the control phase. The difference between the O-NEO phase and
the P-NEO phase fails to pass the significance analysis.

As for the workload of handling the disruptions (shown in Fig-
ure 12(b)), similar differences are observed by the Wilcoxon signed
rank tests between the two pairs: (1) the control phase vs. the O-
NEO phase, (2) the control phase vs. the P-NEO phase. Additional
differences occur when comparing the effort and frustration lev-
els between the O-NEO phase and the P-NEO phase. The effort
required in the P-NEO phase is lower than that of the O-NEO phase
(𝑍 = −2.271, 𝑝 = 0.023). The frustration level is also lower in the
P-NEO phase (𝑍 = −2.333, 𝑝 = 0.020). The mean NASA-TLX score
of the O-NEO phase and the P-NEO phase is reported to be 2.90
and 2.56 on an equal-weighted 7-point scale, indicating that the
general workload of handling disruptions with the help of NEO
is relatively light. These results imply that NEO has successfully
cooperated with participants while they are occupied by something.
The P-NEO with personalized knowledge can better release partici-
pants from handling the disruptions than the O-NEO, which shows
the value of personalization.
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Figure 12: NASA-TLX results. (a) The overall workload of the whole task (including both discussing with the professor and
handling disruptions ). (b) The workload of handling the disruptions. Note that the points of performance in this figure are
aligned so that all questions share the same trend: “the lower the point is, the better”. (𝑠ℎ𝑜𝑤𝑛𝑝𝑜𝑖𝑛𝑡 = 7 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑝𝑜𝑖𝑛𝑡 )

Figure 13: Results of the UEQ-S. In each group of bars, the
left one indicates the result of O-NEO while the right one
indicates the result of P-NEO.

User experience.
The results of UEQ-S are shown in Figure 13. The overall rat-

ings are both above average, indicating that NEO has provided
participants with a good experience of cooperation. A significant
improvement is captured in the channel of pragmatic quality (paired
t-test, 𝑡11 = −2.615, 𝑝 = 0.024) after personalization. We noticed
that the average hedonic quality went up a level after personaliza-
tion: from good to excellent. The average of P-NEO’s overall ratings
(excellent) is two levels higher than that of O-NEO (good).

The average ratings of satisfaction that participants have re-
ported for O-NEO is 5.25 (SD=1.06), while that for P-NEO reaches
6.00 (SD=0.74). Figure 14 visualizes the results. The ratings for NEO
significantly increase after personalization (Wilcoxon signed rank
test, 𝑍 = −2.041, 𝑝 = 0.041).

Semi-structured interview.
Participants were asked to rate their will of using NEO in their

daily lives on a 7-point scale (1=not at all, 7=very much so). The
average rating is 6.25 (SD=0.75), showing that participants hold
a positive attitude towards NEO. Participants’ opinions about the
design of NEO are summarized below.

(1) The way NEO observes and acts. The majority of the partici-
pants were satisfied with NEO. “It can really reduce the disturbance,”
said P07. “The design is simple but clever,” agreed by P11, “and it

Figure 14: Satisfaction ratings of NEO.

is pretty enough for me.” Four expressed particular interest in the
personalization function (P01, P06, P08-09). P09 and P10 mentioned
that answering the door was an important requirement and had
been well handled by NEO. P08 expressed the expectation of NEO
to evaluate his attention and to offer water or food based on this
evaluation: “I don’t want water if I’m in a debate, but I might want
some when chatting.” P09 emphasized the importance of personal-
ization. “I might not use NEO without personalization.” said P09, “I
don’t want a model designed by strangers.”

(2) Other embodiment for NEO. Four participants reported that
the proposed embodiments were enough. P01, P09, and P12 would
like to have additional robotic arms to carry large objects or pick up
books from a book shell. Humanoid robots were nominated by two
participants, while the idea of using drones was proposed by P06.
Different from other participants, P11, a student who majored in
robotics, expressed his concerns: “I think current embodiments are
enough. Using other embodiment might cause additional danger.”

(3)More kinds of behavior. P03 and P06 both suggested extending
the audio module of NEO so that NEO could not only receive the
visitors but also chat with them. The requirement of displaying
caller information was addressed by P07, P09, and P12. P02, P03,
P06, and P07 all pointed out the need for assistance in taking notes
or searching for information during the meeting.

(4) Ethical concerns. P05 expressed worries about the delay in
personalization. “I am afraid that NEO might open the door for my
ex after we break up.” said P05, “When I interact with NEO, it seems
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like I’m looking at my past self.” P06 reminded us that there might
be issues if NEO observes confidential conversations.

7 DISCUSSION AND FUTUREWORK
7.1 System development
The meanings of joint observation. It is seen from Figure 8 that
for most cases, the accuracies increase whenmore classes of sensors
are activated. We thus stress the necessity of joint observation for
an agent to cooperate with people in both physical and virtual
environments. However, we also observe the difference in accuracy
across cases. There are cases that reported good accuracy results
with only PU sensors, but poor accuracy with only PE or VE sensors.
This is caused by the difference in the number of cases that different
sensor classes are related to. For example, the PU class contains a
rich amount of information that related to the user’s occupation
state and disruption states. The VE class’s information, on the
other side, is related to fewer states than that of PU. Although
involving more cases in the test set could reduce such differences,
we argue that the listed cases already reflect the advantage of joint
observation. There are also some cases that are not parsed by NEO,
such as “knocking over a glass of water”. This is caused by the
limitation of NEO’s current sensor set and could be further explored
by extending sensor types for NEO.

Compatibility The results of Stage-2 demonstrate NEO’s com-
patibility of cooperating with different kinds of people. Moreover,
the results of Stage-1 show the compatibility of NEO to work with
different sensor settings. This means that users can activate a subset
of NEO’s sensor set based on their needs and have NEO working
without additional development. It shows NEO’s potential of be-
ing implemented in conventional rooms. The users do not have to
implement the whole system at the beginning.

7.2 User experience
Human-agent symbiosis. In the user study, we put our partici-
pants in a hectic setting where they must handle several things at
once. Then, we contrasted their workload and level of involvement
with and without NEO’s assistance. It is concluded from the results
that NEO did notice the disruption, made the right decision, and
reduced the distraction through bi-environmental action. The feed-
back from participants through the UEQ-S and the semi-structured
interview also suggests that NEO is helpful during the VR meeting,
especially after personalization. Regarding the two physiological
disruptions, although NEO has brought water and food to the user
upon detection of thirst and hunger, saving their effort to take off
the HMD, drinking and eating are still distracting to the immersive
experience. We conclude from the above evidence that NEO takes
one more step towards the two expectations of a man-computer
symbiosis [40] to provide users with a not only viable but also
productive partnership. The interview result also implies that NEO
is well accepted among the participants. These conclusions picture
a bright future of implementing NEO into homes as an AI partner.

Personalization. From another perspective, the results of UEQ-
S show that the personalized NEO is preferable to the original one.
The difference between the UEQ-S result of O-NEO and P-NEO
supports the necessity of personalization. P09 also stressed its im-
portance in the interview. Combining these with reports from the

interview that the P-NEO is more popular among the participants,
we conclude that NEO did learn something from the participants
during the simple feedback interaction session. The overall user ex-
perience of P-NEO is excellent, demonstrating the effect of person-
alization. However, as mentioned by P05, there is a delay between
the feedback session and the actual change of behaviour. This delay
may cause issues when sudden changes in user preferences happen.

7.3 Application
Systems like NEO could be implemented in more smart home sce-
narios. For example, it could be used in kitchens to give warnings
when the food is about to burn; it could also detect pets if they
enter the working area and warn the user, with extensions in the
observation module. NEO could also be used in other scenarios such
as health care. Disabled patients may immerse in virtual worlds for
entertainment in the future. In this case, NEO could help maintain
their physiological needs (bring food or medicines) or ensure their
medical devices are running properly (notify medical staff when an
infusion completes). Additionally, in manufacturing scenarios, if an
accident occurs in a factory but unnoticed by humans, NEO could
detect it through joint observation and handle the fault point.

7.4 Future work
With the capability and usability of NEO proved by these experi-
ments, we are confident to integrate more sensors and algorithms
into the system. Following the suggestions given by the partici-
pants, we would like to update NEO’s set of embodiments with
robotic arms and grippers in the future. The method of providing
visitors information could be further improved to better align with
the ongoing virtual scene.

We address the case of one physical environment with one vir-
tual environment in this work. One physical environment corre-
sponding to multiple virtual environments is a special case in SR.
If there is only one user, NEO could handle these cases when the
user switches from one virtual environment to another. If there are
multiple users immersed in multiple virtual environments, NEO
should be linked to each environment, and the collected data will be
processed in the backend and integrated by the user. Such questions
should be addressed in future work.

8 CONCLUSION
In this paper, we discuss methods for designing an agent under the
topic of human-computer symbiosis. We propose a method that
consists of three points: joint observation, scalable decision, and
joint action. To verify the feasibility of this method, we develop
a prototype system named NEO, which cooperates with people
while they are immersed in a virtual environment. Two system
experiments and a user study are conducted to evaluate this system.
The results support the idea of joint observation and joint action.
They also demonstrate the usability and effectiveness of NEO. Over-
all, NEO represents a promising step forward in the development
of agents that can effectively operate across physical and virtual
environments, facilitating human-agent interaction and providing
users with personalized and responsive support, with important
implications for future research in this field.



Neighbor-Environment Observer: An Intelligent Agent for Immersive Working Companionship UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

REFERENCES
[1] 2022. cvzone, cvzone: This is a Computer vision package that makes it easy to run

Image processing and AI functions. At the core it uses OpenCV and Mediapipe
libraries. https://github.com/cvzone/cvzone.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Atef Ben-Youssef, Giovanna Varni, Slim Essid, and Chloé Clavel. 2019. On-the-fly
detection of user engagement decrease in spontaneous human–robot interaction
using recurrent and deep neural networks. International Journal of Social Robotics
11 (2019), 815–828.

[4] Yoshua Bengio, RéjeanDucharme, and Pascal Vincent. 2000. A neural probabilistic
language model. Advances in neural information processing systems 13 (2000).

[5] Jonnathan Berrezueta-Guzman, Ivan Pau, María-Luisa Martín-Ruiz, and Nuria
Máximo-Bocanegra. 2020. Smart-home environment to support homework activ-
ities for children. IEEE Access 8 (2020), 160251–160267.

[6] Elena Borelli, Giacomo Paolini, Francesco Antoniazzi, Marina Barbiroli, Francesca
Benassi, Federico Chesani, Lorenzo Chiari, Massimiliano Fantini, Franco Fuschini,
Andrea Galassi, et al. 2019. HABITAT: An IoT solution for independent elderly.
Sensors 19, 5 (2019), 1258.

[7] Gary Bradski. 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer 25, 11 (2000), 120–123.

[8] Oya Celiktutan, Efstratios Skordos, and Hatice Gunes. 2017. Multimodal human-
human-robot interactions (mhhri) dataset for studying personality and engage-
ment. IEEE Transactions on Affective Computing 10, 4 (2017), 484–497.

[9] Moohyun Cha, Soonhung Han, Jaikyung Lee, and Byungil Choi. 2012. A virtual
reality based fire training simulator integrated with fire dynamics data. Fire
Safety Journal 50 (2012), 12–24.

[10] Eunhee Chang, Hyun Taek Kim, and Byounghyun Yoo. 2020. Virtual reality
sickness: a review of causes and measurements. International Journal of Human–
Computer Interaction 36, 17 (2020), 1658–1682.

[11] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing (almost) from scratch.
Journal of machine learning research 12, ARTICLE (2011), 2493–2537.

[12] Maria Danninger and Rainer Stiefelhagen. 2008. A context-aware virtual secretary
in a smart office environment. In Proceedings of the 16th ACM international
conference on Multimedia. 529–538.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. arXiv preprint
arXiv:1711.03938 (2017).

[15] Alan Dowdall and Mark Perry. 2001. The millennium home: Domestic technology
to support independent-living older people. In Proceedings of the 1st Equator IRC
Workshop. Citeseer, 1–15.

[16] James Fogarty, Scott E Hudson, and Jennifer Lai. 2004. Examining the robustness
of sensor-based statistical models of human interruptibility. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 207–214.

[17] Mary Ellen Foster, Andre Gaschler, and Manuel Giuliani. 2017. Automatically
classifying user engagement for dynamic multi-party human–robot interaction.
International Journal of Social Robotics 9, 5 (2017), 659–674.

[18] Daniel Gordon, Abhishek Kadian, Devi Parikh, Judy Hoffman, and Dhruv Batra.
2019. Splitnet: Sim2sim and task2task transfer for embodied visual navigation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 1022–
1031.

[19] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. 2021. Embodied
intelligence via learning and evolution. Nature communications 12, 1 (2021), 5721.

[20] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. 2019. Learning latent dynamics for planning from
pixels. In Proceedings of the International Conference on Machine Learning. PMLR,
2555–2565.

[21] Albert Haque, Arnold Milstein, and Li Fei-Fei. 2020. Illuminating the dark spaces
of healthcare with ambient intelligence. Nature 585, 7824 (2020), 193–202.

[22] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[23] Joyce Ho and Stephen S Intille. 2005. Using context-aware computing to reduce
the perceived burden of interruptions from mobile devices. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 909–918.

[24] Matthias Hoppe, Beat Rossmy, Daniel Peter Neumann, Stephan Streuber, Albrecht
Schmidt, and Tonja-KatrinMachulla. 2020. A human touch: Social touch increases
the perceived human-likeness of agents in virtual reality. In Proceedings of the
2020 CHI conference on human factors in computing systems. ACM, 1–11.

[25] Eric Horvitz and Johnson Apacible. 2003. Learning and reasoning about interrup-
tion. In Proceedings of the 5th international conference on Multimodal interfaces.
20–27.

[26] Scott Hudson, James Fogarty, Christopher Atkeson, Daniel Avrahami, Jodi Forl-
izzi, Sara Kiesler, Johnny Lee, and Jie Yang. 2003. Predicting human interrupt-
ibility with sensors: a wizard of oz feasibility study. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 257–264.

[27] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. 2015. Spatial trans-
former networks. Advances in neural information processing systems 28 (2015).

[28] Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha
Kembhavi, and Alexander Schwing. 2020. A cordial sync: Going beyond marginal
policies for multi-agent embodied tasks. In Proceedings of European Conference
on Computer Vision (ECCV). Springer, 471–490.

[29] Brennan Jones, Yaying Zhang, Priscilla NY Wong, and Sean Rintel. 2020. Vroom:
virtual robot overlay for online meetings. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–10.

[30] Cory D Kidd, Robert Orr, Gregory D Abowd, Christopher G Atkeson, Irfan A
Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E Starner, and Wendy Newstetter.
1999. The aware home: A living laboratory for ubiquitous computing research.
In Cooperative Buildings: Integrating Information, Organizations, and Architecture.
Springer, 191–198.

[31] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali
Farhadi. 2017. AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv
preprint arXiv:1712.05474 (2017).

[32] Panu Korpipää, Jonna Häkkilä, Juha Kela, Sami Ronkainen, and Ilkka Känsälä.
2004. Utilising context ontology in mobile device application personalisation. In
Proceedings of the 3rd international conference onMobile and ubiquitousmultimedia.
133–140.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

[34] Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444.
[36] Sang Hyeok Lee, Martha Kim, Hyosun Kim, and Choul Yong Park. 2021. Visual

fatigue induced by watching virtual reality device and the effect of anisometropia.
Ergonomics 64, 12 (2021), 1522–1531.

[37] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. 2018. High Performance
Visual Tracking With Siamese Region Proposal Network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38] Changyang Li, Wei Liang, Chris Quigley, Yibiao Zhao, and Lap-Fai Yu. 2017.
Earthquake safety training through virtual drills. Proceedings of IEEE Transactions
on Visualization & Computer Graph (TVCG) 23, 4 (2017), 1275–1284.

[39] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Sri-
vastava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al.
2021. IGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday
Household Tasks. arXiv preprint arXiv:2108.03272 (2021).

[40] Joseph CR Licklider. 1960. Man-computer symbiosis. IRE transactions on human
factors in electronics 1 (1960), 4–11.

[41] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. 2019. Mediapipe: A framework for building perception pipelines. arXiv
preprint arXiv:1906.08172 (2019).

[42] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[43] Catharine Oertel, Ginevra Castellano, Mohamed Chetouani, Jauwairia Nasir, Mo-
hammad Obaid, Catherine Pelachaud, and Christopher Peters. 2020. Engagement
in human-agent interaction: An overview. Frontiers in Robotics and AI 7 (2020),
92.

[44] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler,
and Antonio Torralba. 2018. Virtualhome: Simulating household activities via
programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 8494–8502.

[45] Libo Qiao, Zongyi Han, Wei Wang, Linlin Li, and Ying Tong. 2021. A Review of
Attention Detection in Online Learning. Artificial Intelligence in Education and
Teaching Assessment (2021), 87–100.

[46] Robert Richer, Nan Zhao, Bjoern M Eskofier, and Joseph A Paradiso. 2020. Explor-
ing smart agents for the interaction with multimodal mediated environments.
Multimodal Technologies and Interaction 4, 2 (2020), 27.

[47] Ognjen Rudovic, Hae Won Park, John Busche, Björn Schuller, Cynthia Breazeal,
and Rosalind W Picard. 2019. Personalized estimation of engagement from
videos using active learning with deep reinforcement learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE, 217–226.

[48] Ognjen Rudovic, Meiru Zhang, Bjorn Schuller, and Rosalind Picard. 2019. Multi-
modal active learning from human data: A deep reinforcement learning approach.
In Proceedings of the International Conference on Multimodal Interaction. 6–15.

[49] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. 2017. Design
and evaluation of a short version of the user experience questionnaire (UEQ-
S). International Journal of Interactive Multimedia and Artificial Intelligence 4, 6

https://github.com/cvzone/cvzone


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Sun, et al.

(2017), 103–108.
[50] Henk WR Schreuder, Jan EU Persson, Richard GH Wolswijk, Ingmar Ihse, Mar-

lies P Schijven, and René HM Verheijen. 2014. Validation of a novel virtual reality
simulator for robotic surgery. The Scientific World Journal 2014 (2014).

[51] Chaopeng Shen. 2018. A transdisciplinary review of deep learning research and
its relevance for water resources scientists. Water Resources Research 54, 11 (2018),
8558–8593.

[52] Ajay Shrestha and Ausif Mahmood. 2019. Review of deep learning algorithms
and architectures. IEEE access 7 (2019), 53040–53065.

[53] Michael Shum, Max Kleiman-Weiner, Michael L Littman, and Joshua B Tenen-
baum. 2019. Theory of minds: Understanding behavior in groups through inverse
planning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
6163–6170.

[54] Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martín-Martín,
Fei Xia, Kent Elliott Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu,
et al. 2022. Behavior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. In Proceedings of the Conference on
Robot Learning. PMLR, 477–490.

[55] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[56] Daniel Szafir and BilgeMutlu. 2012. Pay attention! Designing adaptive agents that
monitor and improve user engagement. In Proceedings of the SIGCHI conference
on human factors in computing systems. 11–20.

[57] Yujie Tao and Pedro Lopes. 2022. Integrating Real-World Distractions into Virtual
Reality. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology. 1–16.

[58] Nirmalya Thakur and Chia Y Han. 2021. An ambient intelligence-based human
behavior monitoring framework for ubiquitous environments. Information 12, 2
(2021), 81.

[59] Sebastian Thrun. 2002. Probabilistic robotics. Commun. ACM 45, 3 (2002), 52–57.
[60] Zhuowen Tu and Song-Chun Zhu. 2002. Image segmentation by data-driven

Markov chain Monte Carlo. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24, 5 (2002), 657–673.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[62] Luiz G Véras, Anna KF Gomes, Guilherme AR Dominguez, and Alexandre T
Oliveira. 2022. Drivers’ attention detection: a systematic literature review. arXiv
preprint arXiv:2204.03741 (2022).

[63] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Edmond Tchapmi,
Alexander Toshev, Roberto Martín-Martín, and Silvio Savarese. 2020. Interac-
tive gibson benchmark: A benchmark for interactive navigation in cluttered
environments. IEEE Robotics and Automation Letters 5, 2 (2020), 713–720.

[64] Deborah Rohm Young, Marie-France Hivert, Sofiya Alhassan, Sarah M Camhi,
Jane F Ferguson, Peter T Katzmarzyk, Cora E Lewis, Neville Owen, Cynthia K
Perry, Juned Siddique, et al. 2016. Sedentary behavior and cardiovascular mor-
bidity and mortality: a science advisory from the American Heart Association.
Circulation 134, 13 (2016), e262–e279.

[65] Zhenliang Zhang. 2021. Symmetrical cognition between physical humans and
virtual agents. In Proceedings of the IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW). IEEE, 587–588.

[66] Zhenliang Zhang. 2023. Building Symmetrical Reality Systems for Cooperative
Manipulation. In Proceedings of the IEEE Conference on Virtual Reality and 3D
User Interfaces Abstracts and Workshops (VRW). IEEE, 751–752.

[67] Zhenliang Zhang, Cong Wang, Dongdong Weng, Yue Liu, and Yongtian Wang.
2019. Symmetrical reality: Toward a unified framework for physical and virtual
reality. In Proceedings of the IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE, 1275–1276.

[68] Zhenliang Zhang, Dongdong Weng, Haiyan Jiang, Yue Liu, and Yongtian Wang.
2018. Inverse augmented reality: A virtual agent’s perspective. In Proceedings
of the IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct). IEEE, 154–157.

[69] Nan Zhao, Asaph Azaria, and Joseph A Paradiso. 2017. Mediated atmospheres: A
multimodal mediated work environment. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 1, 2 (2017), 1–23.

[70] Song-Chun Zhu, David Mumford, et al. 2007. A stochastic grammar of images.
Foundations and Trends® in Computer Graphics and Vision 2, 4 (2007), 259–362.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Environment Observation
	2.2 User Understanding
	2.3 Embodied Agent in Virtual Environments
	2.4 Agent in Smart Spaces

	3 Neighbor-Environment Observation
	3.1 Concept
	3.2 Requirements

	4 Method
	4.1 Design Overview
	4.2 Joint Observation
	4.3 Scalable Decision Making
	4.4 Joint Action

	5 Implementation
	5.1 Software Overview
	5.2 Hardware Overview
	5.3 VR-side Implementation

	6 Experiment
	6.1 System Evaluation #1
	6.2 System Evaluation #2
	6.3 User Study

	7 Discussion and future work
	7.1 System development
	7.2 User experience
	7.3 Application
	7.4 Future work

	8 Conclusion
	References

